sPHENIX Silicon Tracker Overview RIKEN/RBRC Itaru Nakagawa On behalf of sPHENIX Silicon Tracker Team #### Reference design and requirements - $|\eta|$ <1 and $\Delta \phi = 2\pi$ - High efficiency & purity in central Au+Au to measure modified FF - High rate (15kHz DAQ) - High momentum resolution to separate Upsilon states - Precision vertex measurement for heavy flavor measurements (D, B→J/Psi, b-tagged jets) - Compact (Fit inside of EMCAL) #### Inner + Outer Silicon Tracker **Inner Pixel Outer Silicon Strip** 2 Stations 3 Stations **PHENIX Pixel Sensors** #### **Basic Project Philosophy** ### Basic Design Philosophy #### Technology - Employ existing technology - Employ technology we are familiar with #### Man Power Collaborate with Institutes which have the experience and infrastructure #### **Minimum Cost** - Little "R" and rather focus on "D" - As compact as possible #### Schedule • To be in time for 2020 #### **Current Model** Existing technology which satisfies the requirement #### **Existing FVTX Detector** FVTX Project 2006 - 2008 2008 - 2011 R &D Construction Technology and Resources are still in New Mexico & BNL #### **Existing PIXEL Detector** Technology and Resources are in RIKEN & BNL **C**RIKEH ### Silicon Tracker Developing System Eastern Asia + NM + BNL Collaboration # FPHX Chip | Specification | FPHX | SVX4 | | |-------------------|--------|--------|--| | ADC/channel | 3 bits | 8 bits | | | Power Consumption | 64 mW | 300 mW | | | Cooling | Air | Liquid | | | Material | Less | More | | |-------------------|------------|------------|--| | Cooling Operation | Less risky | More risky | | #### Readout Electronics - Electrically same design with FVTX's and even less technologically challenging. - Rest of readout electronics will be very similar to these of FVTX #### Silicon Tracker Model 5 strip layers + 2 pixel ``` S2: 1 strip layer at R~64 cm ~1% X0 (2% in ref. design) ``` S1ab: 2 strip layer at R~32 cm 1.2% X0 total (2% in ref. design) S0ab: 2 strip layer at R~8 cm ~2% X0 total (2.7% in ref. design) P1: pixel at R~5 cm (reconfigured VTXP) 1.3% X0 PO: pixel at R~2.5cm (reconfigured VTXP) 1.3% XO - All strips are 60 or 58 μm x 9.6mm. No stereo - Overall material is ~4.2% (+ 2.6% pixel) radiation length. Most of them (~3%+2.6%) are near beam or in the last layer - Small rad. length to make small over-all size and to keep the required momentum resolution to separate 3 Upsilon states - S0+S1+S2: ~10m² of silicon and 3.1 M ch #### Current design in pCDR | Station | Layer | radius
(cm) | pitch
(µm) | sensor
length
(cm) | depth
(µm) | total thickness $X_0\%$ | area
(m²) | |---------|-------|----------------|---------------|--------------------------|---------------|-------------------------|--------------| | Pixel | 1 | 2.4 | 50 | 0.425 | 200 | 1.3 | 0.034 | | Pixel | 2 | 4.4 | 50 | 0.425 | 200 | 1.3 | 0.059 | | S0a | 3 | 7.5 | 58 | 9.6 | 240 | 1.0 | 0.18 | | S0b | 4 | 8.5 | 58 | 9.6 | 240 | 1.0 | 0.18 | | S1a | 5 | 31.0 | 58 | 9.6 | 240 | 0.6 | 1.4 | | S1b | 6 | 34.0 | 58 | 9.6 | 240 | 0.6 | 1.4 | | S2 | 7 | 64.0 | 60 | 9.6 | 320 | 1.0 | 6.5 | Table 4.2: Number of channel summary for the silicon strip tracker. | station | sub-layer | silicon modules | # of ladders | # of sensors | |---------|-----------|-----------------|--------------|--------------| | | | per ladder | | | | S0 | 2 | 3 | 36 | 216 | | S1 | 2 | 7 | 44 | 616 | | S2 | 1 | 14 | 48 | 672 | #### Simulation of the current design (in pCDR) Figure 4.41: Momentum resolution of the silicon tracker for single pic Figure 4.42: Mass spectrum of the three Upsilon states, with Crystal Ball fits. - Expected momentum resolution and mass resolutions for Upsilon calculated by Tony Frawley for preliminary Conceptual Design Report - σ =94 MeV for Upsilon. Three upsilon states are clearly separated ### Concept of Sensor (for S2) Figure 4.3: Schematic layout strip and readout lines of the sensor. - 96mmx92.16mm active area - Divided into 10x12 blocks - Each block is 9.60mm x 7.68mm and made of 128 strips of 9.6mm x 60 micron - Upper 6 bocks are connected upwards. - Lower 6 blocks are connected by downwards - 24 FPHX chips to readout the entire sensor #### 3 sensors for strip layers S2 sensor Bonding pads for 10 FPHXs S1 sensor Bonding pads for 10 FPHXs - Each sensor is divided in cells of 9.6m(z)x7.68mm active area. Each cell consists of 128 strips of $60\mu m$ x 9.6mm - S2, S1, S0 sensors are made of 12x10, 6x10, and 2x10 cells, respectively - 1 ch in S2 read 6 strips and 1 ch in S1 read 3 strips to save channel counts. Channel occupancy is ~0.2% in S1 and 0.1% in S1 in central Au+Au. ### Concept of FPHX based module (S1) HDI of 10 FPHX chip - This is a concept of a sensor module with FPHX read-out - It is made of - Sensor of (6 x 10) cell structure. Each cell has 128ch of 58 um x 9.6mm strips - A "ROC" (or "HDI") of 10 FPHX chips. They are attached at the top and the bottom of the sensor - The "HDI" is electrically equivalent to the "small HDI" of FVTX so that it can be readout by a FVTX test bench #### S1 Silicon Module Figure 4.48: Layout for the silicon sensor module for the S1 detector. #### S1 ladder side view (outline&material) Cooling tube position will be optimized side view (outline) ### SO barrel (R~8cm) - Two Layers Staggered to Cover the Dead Area - Tight spatial constraint. Rather challenge in HDI design. # S1 barrel (R=30-35cm) - Two Layers Staggered to Cover the Dead Area - Less spatial constraint. Conservative HDI design. ## S2 (R~65 cm) - Single layer. - Least geometrical constraint. ### S0, S1, S2 Barrels • Design of the support structure has not started yet. ### Time line of the project ### Si Strip Detector Labor Profile #### **All Labor** #### SPHENIX SISTRIP BUDGET PROFILE ### Aggressive Time line of the project CD₂ WBS Task Name Start Task Finish 2015 2016 2017 2018 2019 O Mar Mode Apr Sep Feb Oct Aug Nov Dec Jan Jun Mon 8/24/1 Fri 5/17/19 1 1.4 _5 Tracker 2 **Tracking Management** 1.4.1 _5 Mon 8/24/1 Fri 5/17/19 8/24 3 1.4.1.1 Mon 8/24/1! Mon 8/24/1! __ start 4 1.4.1.2 _5 Fri 5/17/19 Fri 5/17/19 **6**5/17 end 5 1.4.2 _ VTX reconfig Mon 8/24/1 Fri 12/7/18 6 1.4.2.1 _5 Design Mon 8/24/1 Fri 6/22/18 1.4.2.2 13 __ Production Mon 4/2/18 Fri 11/9/18 19 1.4.2.3 Mon 11/12/ Fri 12/7/18 testing Н 22 1.4.3 _ SiTracker Mon 8/24/1 Fri 1/4/19 23 1.4.3.1 __ Design Mon 8/24/1 Fri 7/22/16 28 1.4.3.2 _5 Mon 8/24/1 Fri 6/23/17 protoype 1.4.3.3 151 _ production Mon 12/26/ Fri 1/4/19 1.4.4 322 Assembly/test/integration Tue 12/25/1 Mon 3/18/1 _5 323 1.4.4.1 _6 SiTracker Assembly Tue 12/25/1Fri 1/11/19 п 329 1.4.4.2 install electronics Fri 1/11/19 Fri 2/1/19 __ Н 334 1.4.4.3 -5 Pre-Installation to IR Mon 2/4/19 Mon 3/18/1 339 1.4.5 _ SiTracker electronics Thu 12/1/16 Fri 5/17/19 Thu 12/1/16 Wed 8/9/17 340 1.4.5.1 _5 **FPHX** 348 1.4.5.2 **ROC** prepro Sat 4/1/17 Fri 9/15/17 __ 353 1.4.5.3 __ **ROC** production Fri 6/1/18 Thu 10/18/1 1.4.5.4 Sat 12/1/18 Fri 5/17/19 358 _5 **FEM** According to the current status of prototyping, the production can be started earlier. This will smear concentrated budget of Y2018 to earlier years. # Requested funding profile to JSPS | Unit: 100K yen ~ \$1K | JFY2016 | JFY2017 | JFY2018 | JFY2019 | JFY2020 | Total | |-----------------------|---------|---------|---------|---------|---------|-------| | Prototype | 300 | 0 | 0 | 0 | 0 | 300 | | FPHX | 200 | 0 | 0 | 0 | 0 | 200 | | Sensor production | 0 | 660 | 660 | 401 | 0 | 1721 | | Ladder assembly | 0 | 335 | 366 | 245 | 128 | 1074 | | ROC/FEM | 0 | 0 | 0 | 300 | 450 | 750 | | Misc | 20 | 40 | 40 | 40 | 40 | 180 | | Total | 520 | 1035 | 1066 | 986 | 618 | 4225 | - The budget profile of the M&S of Si-Tracker in the grant proposal - The Grant cover prototype and M&S of the tracker hardware - JFY2016 Prototyping of ladders (S0,S1,S2) - JFY2017-2019 production of sensor and ladders - JFY2019,20 ROC/FEM - Complete the tracker by the first half of JFY2020 (Sep 2020) - NOTE: RIKEN/RBRC personnel will work on the project, but not in the JSPS funding request above. ### Assembly Suburb of Tokyo Performed PIXEL Assembly #### **Testing Facility** #### Manpower Expertise and Availability #### **UNM** FVTX benches' test can be used immediately to test Si Strip modules (use FPHX). They can be used to test prototype Si strip module/ladder. #### LANL **BNL**